Constants of nature, atomic masses and some definitions...
 Constants of nature
 Constants of nature
 Energy factors
 Energy factors
 Table of Atomic masses
Table of Atomic masses
 Astrophysical S-factor
Astrophysical S-factor
 Gamow energy
 Gamow energy
 References
 References
 Constants of nature
 Constants of natureThe constants of nature used in this compilation are those provided by the latest published report of the Particle Data Group [PA96]:
| Speed of light | c = 299792458 m/s | 
| Avogadro number | NA = 6.0221e23 mol-1 | 
| Fine structure constant | 1/a = hbar c/ e2 = 137.036 | 
| kBT = 0.08617 T9 MeV = T9/11.605 MeV | 
| hbar c = 197.327 MeV fm | 
 Energy factors
 Energy factorsSome useful energy equivalent factors:
| 1 amu = 931.494 MeV/ c2 | 
| 1 eV = 1.60218e-19 J | 
 Atomic masses
 Atomic massesFor the reaction rate calculations, atomic masses have been taken from the 1997 compilation by G. Audi et al. [AU97]. The table below gives the recommended values for some of the atomic masses involved in the present compilation.
| Element | Atomic mass  | Used value  | 
| n | 1.008664924(2) | 1.0086649 | 
| 1H | 1.007825032(1) | 1.0078250 | 
| 2H | 2.014101778(1) | 2.0141018 | 
| 3H | 3.016049268(1) | 3.0160493 | 
| 3He | 3.016029309(1) | 3.0160293 | 
| 4He | 4.002603250(1) | 4.0026033 | 
| 6Li | 6.015122306(509) | 6.0151223 | 
| 7Li | 7.016004073(506) | 7.0160040 | 
| 7Be | 7.016929269(506) | 7.0169292 | 
| 8Be | 8.005305095(38) | 8.0053051 | 
| 8B | 8.024606727(1188) | 8.0246067 | 
| 9Be | 9.012182248(405) | 9.0121821 | 
| 9B | 9.0133288919(1047) | 9.0133288 | 
| 10B | 10.012937097(349) | 10.0129370 | 
| 11B | 11.009305514(405) | 11.0093055 | 
| 12C | 12.000000000 | 12.0000000 | 
| 13C | 13.003354838(5) | 13.0033548 | 
| 13N | 13.005738584(289) | 13.0057386 | 
| 14C | 14.003241991(4) | 14.0032420 | 
| 14N | 14.003074007(2) | 14.0030740 | 
| 14O | 14.008595287(80) | 14.0085953 | 
| 15N | 15.000108973(12) | 15.0001089 | 
| 15O | 15.003065460(540) | 15.0030645 | 
| 16O | 15.994914622(3) | 15.9949146 | 
| 17O | 16.999131501(223) | 16.9991315 | 
| 17F | 17.002095238(266) | 17.0020952 | 
| 18O | 17.999160413(851) | 17.9991604 | 
| 18F | 18.000937665(636) | 18.0009377 | 
| 19F | 18.998403205(75) | 18.9984032 | 
| 19Ne | 19.001879726(612) | 19.0018798 | 
| 20Ne | 19.992440176(3) | 19.9924402 | 
| 21Ne | 20.993846744(43) | 20.9938467 | 
| 21Na | 20.997655100(751) | 20.9976551 | 
| 22Ne | 21.991385500(252) | 21.9913855 | 
| 22Na | 21.994436633(482) | 21.9944366 | 
| 23Na | 22.989769657(262) | 22.9897697 | 
| 23Mg | 22.994124828(1353) | 22.9941249 | 
| 24Mg | 23.985041874(258) | 23.9850419 | 
| 25Mg | 24.985837000(261) | 24.9858370 | 
| 25Al | 24 990428531(760) | 24.9904286 | 
| 26Mg | 25.982592999(264) | 25.9825930 | 
| 26Al | 25.986891675(268) | 25.9868917 | 
| 27Al | 26.981538407(238) | 26.9815384 | 
| 27Si | 26.986704124(264) | 26.9867041 | 
| 28Si | 27.976926494(216) | 27.9769265 | 
| 29Si | 28.976494680(219) | 28.9764947 | 
| 29P | 28.981801337(807) | 28.9818014 | 
| 30Si | 29.973770179(221) | 29.9737702 | 
| 30P | 29.978313768(482) | 29.9783138 | 
| 31P | 30.973761487(269) | 30.9737615 | 
 Astrophysical S-factor
 Astrophysical S-factorAt low energies where E<<ECou, the probability that incoming
particles penetrate the Coulomb barrier can be approximated by the simple
expression: 
P = exp(-2ph). 
The quantity h is called the Sommerfeld parameter.
In numerical units the exponent is 2ph = 0.9895 Z1Z2(A/E)1/2, where the center of mass energy E is given in MeV and the reduced mass A is in amu. This approximate expression for the tunneling probability is commonly referred to as the Gamow factor.Due to the exponential behaviour for tunneling, P, the cross section of charged-particle-induced nuclear reactions drops rapidly for energies E<<ECou (astrophysical energy range). As a quantum-mechanical interaction between particles, the nuclear reaction probability is proportional to a geometrical factor pl2, which is proportional to E-1. The two factors, P and E-1, represent explicitely well-known energy dependences of non-nuclear nature. The cross section can be then described as:
s(E) = S(E) exp(2ph(E))/E.
The intrinsic nuclear part of the reaction probability is the so-called astrophysical S-factor, S(E), defined by this equation.The extrapolation of experimental data to the energies of astrophysical interest, the S-factor is a much more convenient function than the cross section. This is, for example, the case of reaction involving light nuclides, when no resonances are present in the stellar energy range [CL68, RO88]..
 Gamow window and Gamow energy
  Gamow window and Gamow energyFor a given stellar temperature T, nuclear reactions take place in a relative narrow window DE0 around the effective burning energy E0. In numerical units these quantities are given by:
E0 = 0.1220 (Z12Z22AT92)1/3 MeV
and
DE0 = 0.2368(Z12Z22AT95)1/6 MeV,
where the symbol T9 represents the temperature T in units of 109 K [CL68, RO88].
 References
  References[CL68]: D. D. Clayton, Principles of Stellar Evolution and Nucleosynthesis, New York, MacGraw-Hill, 1968.
[RO88]: C. E. Rolfs and W. S. Rodney, Cauldrons in the Cosmos, The University of Chicago Press, Chicago and London, 1988.
[PA92]: Particle Data Group, Review of Particle Properties, Phys. Rev. D45, (1992) 1.
[AU97]: G. Audi, O. Bersillon, J. Blachot, and A.H. Wapstra, Nucl. Phys. A624, 1 (1997).